Action | Key |
---|---|
Play / Pause | K or space |
Mute / Unmute | M |
Toggle fullscreen mode | F |
Select next subtitles | C |
Select next audio track | A |
Toggle automatic slides maximization | V |
Seek 5s backward | left arrow |
Seek 5s forward | right arrow |
Seek 10s backward | shift + left arrow or J |
Seek 10s forward | shift + right arrow or L |
Seek 60s backward | control + left arrow |
Seek 60s forward | control + right arrow |
Seek 1 frame backward | alt + left arrow |
Seek 1 frame forward | alt + right arrow |
Decrease volume | shift + down arrow |
Increase volume | shift + up arrow |
Decrease playback rate | < |
Increase playback rate | > |
Seek to end | end |
Seek to beginning | beginning |
La mal nommée décomposition de Dunford est une décomposition d'une application linéaire en somme d'une application diagonalisable et d'une application nilpotente. Claude Chevalley en a donné une démonstration valable dans un cadre algébrique très général... en faisant appel à un algorithme célèbre d'analyse numérique. Nous présenterons cette démonstration.
Les 5 minutes Lebesgue
"Les 5 minutes Lebesgue" est une série d'exposés de 5 minutes chrono dont l'objectif est de parler de mathématiques. Le sujet et le niveau de l'exposé est laissé au choix de l'orateur.
Le Centre de recherche en mathématique Henri Lebesgue
Lauréat de la 2ème vague de l'appel à projets "Laboratoires d'excellence" (Labex), Le Centre de Mathématiques Henri Lebesgue (fondements, interactions, applications et formation) est un institut de recherche et de formation en mathématiques pour la Bretagne et les Pays de la Loire avec de forts liens interdisciplinaires. Il réunit des compétences mathématiques de Rennes, Nantes, Brest, Vannes et Angers, dans toutes les disciplines (géométrie, algèbre, analyse, statistique, probabilités) permettant de progresser plus rapidement sur les grands problèmes scientifiques existants dans le domaine de l'analyse, des probabilités et des statistiques. Il vise à explorer leurs interactions avec les problématiques liées aux systèmes complexes que l'on rencontre dans les applications socio-économiques dans les domaines de la santé, du numérique, des matériaux. L’Université de Nantes est fortement impliquée dans ce centre par le biais du Laboratoire de mathématiques Jean Leray (LJML).
Si vous êtes abonné aux notifications, un e-mail vous sera envoyé pour toutes les annotations ajoutées.
Votre compte utilisateur n'a pas d'adresse e-mail.